Project organised science studies

Morten Blomhøj and Tinne Hoff Kjeldsen (Roskilde University, Denmark) also wrote an article called Project organised science studies at university level: exemplarity and interdisciplinarity, that was published in ZDM. Here is the abstract of their second article:

The 2-year introductory study programme in the natural sciences (Nat-Bas) at Roskilde University is an example of a project organised, participant directed, problem oriented, and interdisciplinary science study programme. The paper gives an account of the organisational framework around the project work, and discusses in particular, the thematic organisation of project work, the notion of exemplarity, the problem orientation, the interdisciplinary nature of the problems, the assessment of the project work, and the students’ individual learning. Based on descriptions and analyses of six selected project reports from the Nat-Bas in 2005-2007, we illustrate the multiple perspectives of science and mathematics and the learning potentials found in the project work. The paper is concluded with a general discussion of the quality of the project work and its educational function in the Nat-Bas programme.

Integrating history and philosophy

Tinne Hoff Kjeldsen and Morten Blomhøj (both Roskilde University, Denmark) have written an article that was recently published online in ZDM. The article is entitled Integrating history and philosophy in mathematics education at university level through problem-oriented project work, and here is the abstract:

Through the last three decades several hundred problem-oriented student-directed projects concerning meta-aspects of mathematics and science have been performed in the 2-year interdisciplinary introductory science programme at Roskilde University. Three selected reports from this cohort of project reports are used to investigate and present empirical evidence for learning potentials of integrating history and philosophy in mathematics education. The three projects are: (1) a history project about the use of mathematics in biology that exhibits different epistemic cultures in mathematics and biology. (2) An educational project about the difficulties of learning mathematics that connects to the philosophy of mathematics. (3) A history of mathematics project that connects to the sociology of multiple discoveries. It is analyzed and discussed in what sense students gain first hand experiences with and learn about meta-aspects of mathematics and their mathematical foundation through the problem-oriented student-directed project work.

Algebra beginners in computer intensive environment

Michael Tabach, Abraham Arcavi and rina Hershkowitz (all from the Weizmann Institute of Science, Israel) have written an article called Transitions among different symbolic generalizations by algebra beginners in a computer intensive environment. The article was published online in Educational Studies in Mathematics on Saturday. Here is the article’s abstract:

The transition from arithmetic to algebra in general, and the use of symbolic generalizations in particular, are a major challenge for beginning algebra students. In this article, we describe and analyze students’ learning in a “computer intensive environment” designed ad hoc and implemented in two seventh grade classrooms throughout two consecutive school years. In particular, this article focuses on the description and analysis of how students initial generalizations (which relied on computerized tools that enabled different students’ to work with different strategies) shifted to recursive and explicit symbolic generalizations.

Abstraction and consolidation of the limit procept

Ivy Kidron from Jerusalem College of Technology has written an article that was published online by Educational Studies in Mathematics recently. The article is entitled: Abstraction and consolidation of the limit procept by means of instrumented schemes: the complementary role of three different frameworks. Abstract:

I investigate the contributions of three theoretical frameworks to a research process and the complementary role played by each. First, I describe the essence of each theory and then follow the analysis of their specific influence on the research process. The research process is on the conceptualization of the notion of limit by means of the discrete continuous interplay. I investigate the influence of the different perspectives on the research process and realize that the different theoretical approaches intertwine. Moreover, I realize that the research study demanded the contribution of more than one theoretical approach to the research process and that the differences between the frameworks could serve as a basis for complementarities.

From lessons to lectures

Alex James, Clemency Montelle and Phillipa Williams have written an article that was recently published online in International Journal of Mathematical Education in Science and Technology. The article is entitled From lessons to lectures: NCEA mathematics results and first-year mathematics performance, and here is the abstract:

Given the recent radical overhaul of secondary school qualifications in New Zealand, similar in style to those in the UK, there has been a distinct change in the tertiary entrant profile. In order to gain insight into this new situation that university institutions are faced with, we investigate some of the ways in which these recent changes have impacted upon tertiary level mathematics in New Zealand. To this end, we analyse the relationship between the final secondary school qualifications in Mathematics with calculus of incoming students and their results in the core first-year mathematics papers at Canterbury since 2005, when students entered the University of Canterbury with these new reformed school qualifications for the first time. These findings are used to investigate the suitability of this new qualification as a preparation for tertiary mathematics and to revise and update entrance recommendations for students wishing to succeed in their first-year mathematics study.

NOMAD, June 2008

As we are about to shift from June to July, it is time to point your attention to the June issue of NOMAD (Nordic Studies in Mathematics Education). The issue contains an interesting editorial concerning the development of the journal, some information from Barbro Grevholm about the Nordic graduate school in mathematics education, and three research articles:

  • Matematikopfattelser hos 2g’ere: fokus på de ‘tre aspekter‘ by Uffe Thomas Jankvist. Abstract: Based on the so-called ‘three aspects‘ from the 1987-regulations for the Danish upper secondary mathematics programme this article discusses second-year upper secondary students’ beliefs about the nature of mathematics. That is to say, it investigates the students’ beliefs concerning the historical evolution of mathematics, the application of mathematics in society, and the inner structures of mathematics as a scientific discipline. Firstly, the article examines the origin of the ‘three aspects‘ as well as the role they play in both the KOM-project of 2002 and the new regulations for the Danish upper secondary mathematics programme of 2007. Secondly, it discusses how the students in a concrete second-year class of upper secondary level seem to fulfil the goals of the ‘three aspects’. Thirdly, the results of this study are compared to a similar study from 1980 and differences and similarities between the two are discussed. It is concluded that there still is room for improvement concerning the fulfilment of the three aspects, and that the students’ beliefs in the 1980-study and in the 2007-study are very similar. In the end, the article speculates upon why the ‘three aspects’ do not seem to have had a larger impact on the mathematics teaching on upper secondary level when they have been in the regulations for twenty years now.
  • Interrater reliability in a national assessment of oral mathematical communication by Torulf Palm. Abstract: Mathematical communication, oral and written, is generally regarded as an important aspect of mathematics and mathematics education. This implies that oral mathematical communication also should play a part in various kinds of assessments. But oral assessments of subject matter knowledge or communication abilities, in education and elsewhere, often display reliability problems, which render difficulties with their use. In mathematics education, research about the reliability of oral assessments is comparably uncommon and this lack of research is particularly striking when it comes to the assessment of mathematical communication abilities. This study analyses the interrater reliability of the assessment of oral mathematical communication in a Swedish national test for upper secondary level. The results show that the assessment does suffer from interrater reliability problems. In addition, the difficulties to assess this construct reliably do not seem to mainly come from the communication aspect in itself, but from insufficiencies in the model employed to assess the construct.
  • Finnish mathematics teacher students’ informal and formal arguing skills in the case of derivative by Antti Viholainen. Abstract: In this study, formal and informal reasoning skills of 146 Finnish subject-teacher students in mathematics are investigated. The students participated in a test in which they were asked to argue two claims concerning derivative both informally and formally. The results show that the success in the formal tasks and the success in the informal tasks were dependent. However, there were several students who did well in the formal tasks despite succeeding poorly in the informal tasks. The success both in the formal tasks and in the informal tasks was dependent also on the amount of passed studies in mathematics and on the success in these studies. Moreover, these factors could have a stronger effect on the formal than on the informal reasoning skills.

JRME, July 2008

Issue 4 of JRME is out, and it contains lots of interesting articles:

Triangles as intuitive non-examples

Pessia Tsamir, Dina Tirosh and Esther Levenson (all from Tel Aviv University, Israel) have written an article about concept formation in kindergarten children in Educational Studies in Mathematics. The article is entitled: Intuitive nonexamples: the case of triangles. Here is the abstract:

In this paper we examine the possibility of differentiating between two types of nonexamples. The first type, intuitive nonexamples, consists of nonexamples which are intuitively accepted as such. That is, children immediately identify them as nonexamples. The second type, non-intuitive nonexamples, consists of nonexamples that bear a significant similarity to valid examples of the concept, and consequently are more often mistakenly identified as examples. We describe and discuss these notions and present a study regarding kindergarten children’s grasp of nonexamples of triangles.

Pythagorean approximations

Javier Peralta from Madrid, Spain wrote an article that was recently published online in Teaching Mathematics and its Applications. The article is entitled Pythagorean approximations and continued fractions, and it relates to the Fibonacci sequence, sequences of rational numbers, etc. Here is the abstract of the article:

In this article, we will show that the Pythagorean approximations of Formula coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers converging to different algebraic irrationals. We will see how approximations to some irrational numbers, using known facts from the history of mathematics, may perhaps help to acquire a better comprehension of the real numbers and their properties at further mathematics level.

Effectiveness of teacher education

Sigrid Blömeke, Anja Felbrich, Christiane Müller, Gabriele Kaiser and Rainer Lehmann have written an article that was recently published online in ZDM. The article is entitled “Effectiveness of teacher education“, and here is the abstract:

Teacher-education research lacks a common theoretical basis, which prevents a convincing development of instruments and makes it difficult to connect studies to each other. Our paper models how to measure effective teacher education in the context of the current state of knowledge in the field. First, we conceptualize the central criterion of effective teacher education: “professional competence of future teachers”. Second, individual, institutional, and systemic factors are modeled that may influence the acquisition of this competence during teacher education. In doing this, we turn round the perspective taken by Cochran-Smith and Zeichner (Studying teacher education. The report of the AERA panel on research and teacher education. Lawrence Erlbaum, Mahwah 2005), who mainly take an educational-sociological perspective by focusing on characteristics of teacher education and looking for their effects. In contrast, we take an educational-psychological perspective by focusing on professional competence of teachers and examining influences on this. Challenges connected to an assessment of teacher-education outcomes are discussed as well.