Three new ZDM articles

Three new articles have been published online in ZDM lately. One of these articles is entitled The role of fluency in a mathematics item with an embedded graphic: interpreting a pie chart, and it is written by Carmel Mary Diezmann and Tom Lowrie. Here is the abstract of their article:

The purpose of this study was to identify the pedagogical knowledge relevant to the successful completion of a pie chart item. This purpose was achieved through the identification of the essential fluencies that 12–13-year-olds required for the successful solution of a pie chart item. Fluency relates to ease of solution and is particularly important in mathematics because it impacts on performance. Although the majority of students were successful on this multiple choice item, there was considerable divergence in the strategies they employed. Approximately two-thirds of the students employed efficient multiplicative strategies, which recognised and capitalised on the pie chart as a proportional representation. In contrast, the remaining one-third of students used a less efficient additive strategy that failed to capitalise on the representation of the pie chart. The results of our investigation of students’ performance on the pie chart item during individual interviews revealed that five distinct fluencies were involved in the solution process: conceptual (understanding the question), linguistic (keywords), retrieval (strategy selection), perceptual (orientation of a segment of the pie chart) and graphical (recognising the pie chart as a proportional representation). In addition, some students exhibited mild disfluencies corresponding to the five fluencies identified above. Three major outcomes emerged from the study. First, a model of knowledge of content and students for pie charts was developed. This model can be used to inform instruction about the pie chart and guide strategic support for students. Second, perceptual and graphical fluency were identified as two aspects of the curriculum, which should receive a greater emphasis in the primary years, due to their importance in interpreting pie charts. Finally, a working definition of fluency in mathematics was derived from students’ responses to the pie chart item.

The other is written by Alan T. Graham, Maxine Pfannkuch and Michael O.J. Thomas. Their article is called Versatile thinking and the learning of statistical concepts. In the abstract you learn more about the main ideas in this article:

Statistics was for a long time a domain where calculation dominated to the detriment of statistical thinking. In recent years, the latter concept has come much more to the fore, and is now being both researched and promoted in school and tertiary courses. In this study, we consider the application of the concept of flexible or versatile thinking to statistical inference, as a key attribute of statistical thinking. Whilst this versatility comprises process/object, visuo/analytic and representational versatility, we concentrate here on the last aspect, which includes the ability to work within a representation system (or semiotic register) and to transform seamlessly between the systems for given concepts, as well as to engage in procedural and conceptual interactions with specific representations. To exemplify the theoretical ideas, we consider two examples based on the concepts of relative comparison and sampling variability as cases where representational versatility may be crucial to understanding. We outline the qualitative thinking involved in representations of relative density and sample and population distributions, including mathematical models and their precursor, diagrammatic forms.

Finally, George Gadanidis and Vince Geiger have written an article about A social perspective on technology-enhanced mathematical learning: from collaboration to performance. Here is the abstract of their article:

This paper documents both developments in the technologies used to promote learning mathematics and the influence on research of social theories of learning, through reference to the activities of the International Commission on Mathematical Instruction (ICMI), and argues that these changes provide opportunity for the reconceptualization of our understanding of mathematical learning. Firstly, changes in technology are traced from discipline-specific computer-based software through to Web 2.0-based learning tools. Secondly, the increasing influence of social theories of learning on mathematics education research is reviewed by examining the prevalence of papers and presentations, which acknowledge the role of social interaction in learning, at ICMI conferences over the past 20 years. Finally, it is argued that the confluence of these developments means that it is necessary to re-examine what it means to learn and do mathematics and proposes that it is now possible to view learning mathematics as an activity that is performed rather than passively acquired.

A study on the teaching of the concept of negative numbers

Kemal Altiparmak and Ece Özdogan have written an article that was recently published online in International Journal of Mathematical Education in Science and Technology. The article is entitled A study on the teaching of the concept of negative numbers. Here is the abstract of their article.

This study mainly aims to develop an effective strategy to overcome the known difficulties in teaching negative numbers. Another aim is to measure the success of this teaching strategy among a group of elementary level pupils in Idotzmir, Turkey. Learning negative concepts are supported by computer animations. The academic achievement test developed by the researchers was administered to 150 sixth-grade pupils at the beginning of and following the learning period. The teaching strategy was applied to the experiment group (n = 75) as stated above, while the traditional teaching model most frequently used in Turkey was applied to the control group (n = 75). At the end of the study, a significant difference was found in favour of the experiment group (t = 17.51, df = 148, p = 0.000 < 0.05).

Honoring Paul Ernest

Information Age Publishing is about to publish a “Festschrift in honor of Paul Ernest’s 65th Birthday“. This is a volume in the monograph series of The Montana Mathematics Enthusiast, and it is edited by Bharath Sriraman and Simon Goodchild. Paul Ernest has a big name in the community of mathematics education researchers, and his main field of interest is within the area of philosophy of mathematics and philosophy of mathematics education. Here is a copy of the publisher’s description of the book:

Paul Ernest’s name is synonymous with social constructivism as a philosophy of mathematics. His contributions to mathematics education have occurred at a very fundamental level and to a extent shaped theory development in this field. His research addresses fundamental questions about the nature of mathematics and how it relates to teaching, learning and society. For the last three decades Paul has been a prolific scholar who has published in a wide array of topics such as the relationship between the philosophy of mathematics and mathematics education, and more generally the philosophy of mathematics education, ethics and values in mathematics education, and the philosophy of research methodology.

The title of this Festschrift is meant to be a pun to convey the sometimes relativistic dimension to mathematical certainty that Paul argued for in developing his philosophy, and also a play on words for the fact that absolute “earnestness” may perhaps be a Platonic construct, and not possible in the realm of language and human discourse! Paul Ernest’s scholarly evolution and life can best be summarized in the words of Walt Whitman “Do I contradict myself? Very well then I contradict myself” (I am large, I contain multitudes). Indeed his presence has been large and multitudinous and this Festschrift celebrates his 65th Birthday with numerous contributions coming from the mathematics, philosophy and mathematics education communities around the world.

What the eyes already know

Angela Heine and colleagues have written an article called: What the eyes already ‘know’: using eye movement measurement to tap into children’s implicit numerical magnitude representations. The article has recently been published in Infant and Child Development. The authors make interesting links between eye movements and childrens understanding of numbers. Here is the abstract of their article:

To date, a number of studies have demonstrated the existence of mismatches between children’s implicit and explicit knowledge at certain points in development that become manifest by their gestures and gaze orientation in different problem solving contexts. Stimulated by this research, we used eye movement measurement to investigate the development of basic knowledge about numerical magnitude in primary school children. Sixty-six children from grades one to three (i.e. 6-9 years) were presented with two parallel versions of a number line estimation task of which one was restricted to behavioural measures, whereas the other included the recording of eye movement data. The results of the eye movement experiment indicate a quantitative increase as well as a qualitative change in children’s implicit knowledge about numerical magnitudes in this age group that precedes the overt, that is, behavioural, demonstration of explicit numerical knowledge. The finding that children’s eye movements reveal substantially more about the presence of implicit precursors of later explicit knowledge in the numerical domain than classical approaches suggests further exploration of eye movement measurement as a potential early assessment tool of individual achievement levels in numerical processing.

Students’ understanding of a logical structure in the definition of limit

Kyeong Hah Roh has written an article entitled An empirical study of students’ understanding of a logical structure in the definition of limit via the ε-strip activity. This article was published online in Educational Studies in Mathematics last Thursday. Here is the abstract of the article:

This study explored students’ understanding of a logical structure in defining the limit of a sequence, focusing on the relationship between ε and N. The subjects of this study were college students who had already encountered the concept of limit but did not have any experience with rigorous proofs using the ε–N definition. This study suggested two statements, each of which is written by using a relationship between ε and N, similar to the ε–N definition. By analyzing the students’ responses to the validity of the statements as definitions of the limit of a sequence, students’ understanding of such a relationship was classified into five major categories. This paper discusses some essential components that students must conceptualize in order properly to understand the relationship between ε and N in defining the limit of a sequence.

Working like real mathematicians

Atara Shriki has written an interesting article called Working like real mathematicians: developing prospective teachers’ awareness of mathematical creativity through generating new concepts. This article was recently published online in Educational Studies in Mathematics. The author reports from a study related to a methods course, where a strong focus is on creativity in mathematics. The article has a particular focus on prospective teachers’ awarenes of creativity in mathematics.

Here is the abstract of Shriki’s article.

This paper describes the experience of a group of 17 prospective mathematics teachers who were engaged in a series of activities aimed at developing their awareness of creativity in mathematics. This experience was initiated on the basis of ideas proposed by the participants regarding ways creativity of school students might be developed. Over a period of 6 weeks, they were engaged in inventing geometrical concepts and in the examination of their properties. The prospective teachers’ reflections upon the process they underwent indicate that they developed awareness of various aspects of creativity while deepening their mathematical and didactical knowledge.

Exploration of technologies

Paulus Gerdes has written an article called Exploration of technologies, emerging from African cultural practices, in mathematics (teacher) education. This article was recently published online in ZDM. In this article, Gerdes provides an interesting overview of how the cultural practices of African mathematics (teacher) education has developed, and he makes a seemingly (to me) impossible connection between traditional basket weaving and exploration of technologies.

Here is the abstract of the article:

The study at teacher education institutions in Africa of mathematical ideas, from African history and cultures, may broaden the horizon of (future) mathematics teachers and increase their socio-cultural self-confidence and awareness. Exploring educationally mathematical ideas embedded in, and derived from, technologies of various African cultural practices may contribute to bridge the gap between ‘home’ and ‘school’ culture. Examples of the study and exploration of these technologies and cultural practices will be presented. The examples come from cultural practices as varied as story telling, basket making, salt production, and mat, trap and hat weaving.

Theories of Mathematics Education

A new book, entitled Theories of Mathematics Education, is about to be published by Springer (due October 2009). One of the editors, Bharath Sriraman (also editor of The Montana Mathematics Enthusiast) has been kind enough to give me permission to post the book cover and the table of contents here on my blog. Thanks, Bharath!

Looking at the table of contents is enough to make me believe that this is definitely going to be an important book, and it will make an impact on our field of research! If you won’t take my word for it, please take the time to read through the table of contents yourself:

Theories of Mathematics Education – TOC

I especially like the way it is built up, with introductions and commentaries to all the parts of the book. This will give the reader a feeling of how the field has evolved, and how it is still in a process of evolving.

The publisher has given the following description of the book:

This inaugural book in the new series Advances in Mathematics Education is the most up to date, comprehensive and avant garde treatment of Theories of Mathematics Education which use two highly acclaimed ZDM special issues on theories of mathematics education (issue 6/2005 and issue 1/2006), as a point of departure. Historically grounded in the Theories of Mathematics Education (TME group) revived by the book editors at the 29th Annual PME meeting in Melbourne and using the unique style of preface-chapter-commentary, this volume consist of contributions from leading thinkers in mathematics education who have worked on theory building.

This book is as much summative and synthetic as well as forward-looking by highlighting theories from psychology, philosophy and social sciences that continue to influence theory building. In addition a significant portion of the book includes newer developments in areas within mathematics education such as complexity theory, neurosciences, modeling, critical theory, feminist theory, social justice theory and networking theories. The 19 parts, 17 prefaces and 23 commentaries synergize the efforts of over 50 contributing authors scattered across the globe that are active in the ongoing work on theory development in mathematics education.

You might also be interested in taking a look at the cover of the book

Theories of Mathematics Education – Cover

To me, at least, this is definitely a book I am looking forward to read. And after all, October is not that far away 🙂

IJSME, August 2009

The August issue (Volume 7, Number 4) of International Journal of Science and Mathematics Education has been published. This issue contains 9 articles:

School mathematics curriculum materials for teachers’

Gwendolyn M. Lloyd has written an article that was recently published online in ZDM. The article is entitled School mathematics curriculum materials for teachers’ learning: future elementary teachers’ interactions with curriculum materials in a mathematics course in the United States. Here is the abstract of her article:

This report describes ways that five preservice teachers in the United States viewed and interacted with the rhetorical components (Valverde et al. in According to the book: using TIMSS to investigate the translation of policy into practice through the world of textbooks, Kluwer, 2002) of the innovative school mathematics curriculum materials used in a mathematics course for future elementary teachers. The preservice teachers’ comments reflected general agreement that the innovative curriculum materials contained fewer narrative elements and worked examples, as well as more (and different) exercises and question sets and activity elements, than the mathematics textbooks to which the teachers were accustomed. However, variation emerged when considering the ways in which the teachers interacted with the materials for their learning of mathematics. Whereas some teachers accepted and even embraced changes to the teaching–learning process that accompanied use of the curriculum materials, other teachers experienced discomfort and frustration at times. Nonetheless, each teacher considered that use of the curriculum materials improved her mathematical understandings in significant ways. Implications of these results for mathematics teacher education are discussed.