Math tutoring for low-achieving students

Ronnie Karsenty has written an article entitled Nonprofessional mathematics tutoring for low-achieving students in secondary schools: A case study. This article was published online in Educational Studies in Mathematics last week. The project that is reported in the article is part of a larger project (SHLAV – Hebrew acronym for Improving Mathematics Learning). The research questions in the study are:

  1. Will nonprofessional tutoring be effective, in terms of improving students’ achievements in mathematics, and if so, to what extent?
  2. Which factors will be identified by tutors as having the greatest impact on the success or failure of tutoring?

Here is the abstract of the article:

This article discusses the possibility of using nonprofessional tutoring as means for advancing low achievers in secondary school mathematics. In comparison with professional, paraprofessional, and peer tutoring, nonprofessional tutoring may seem less beneficial and, at first glance, inadequate. The described case study shows that nonprofessional tutors may contribute to students’ understanding and achievements, and thus, they can serve as an important assisting resource for mathematics teachers, especially in disadvantaged communities. In the study, young adults volunteered to tutor low-achieving students in an urban secondary school. Results showed a considerable mean gain in students’ grades. It is suggested that affective factors, as well as the instruction given to tutors by a specialized counselor, have played a major role in maintaining successful tutoring.

The increasing role of metacognitive skills in math

Manita Van der Stel, Marcel Veenman, Kim Deelen and Janine Haenen have written an article entitled The increasing role of metacognitive skills in math: a cross-sectional study from a developmental perspective. This article was published online in ZDM last week. The article is an Open Access article, so it is freely available for all to read, but here is a copy of the abstract to tickle your interest:

Both intelligence and metacognitive skillfulness have been regarded as important predictors of math performance. The role that metacognitive skills play in math, however, seems to be subjected to change over the early years of secondary education. Metacognitive skills seem to become more general (i.e., less domain-specific) by nature (Veenman and Spaans in Learn Individ Differ 15:159–176, 2005). Moreover, according to the monotonic development hypothesis (Alexander et al. in Dev Rev 15:1–37, 1995), metacognitive skills increase with age, independent of intellectual development. This hypothesis was tested in a study with 29 second-year students (13–14 years) and 30 third-year students (14–15 years) in secondary education. A standardized intelligence test was administered to all students. Participants solved math word problems with a difficulty level adapted to their age group. Thinking-aloud protocols were collected and analyzed on the frequency and quality of metacognitive activities. Another series of math word problems served as post-test. Results show that the frequency of metacognitive activity, especially those of planning and evaluation, increased with age. Intelligence was a strong predictor of math performance in 13- to 14-year-olds, but it was less prominent in 14- to 15-year-olds. Although the quality of metacognitive skills appeared to predict math performance in both age groups, its predictive power was stronger in 14- to 15-year-olds, even on top of intelligence. It bears relevance to math education, as it shows the increasing relevance of metacognitive skills to math learning with age.

Visual templates in pattern generalization activity

F.D. Rivera has written an article called Visual templates in pattern generalization activity. The article was published online in Educational Studies in Mathematics last Thursday. The study, which is described in the article, was carried out in an eighth-grade Algebra 1 class in California. Four and a half months after a teaching experiment on pattern generalization, 11 students were interviewed (clinical interviews). Clinical interviews were also made with these students directly before and after the teaching experiment. The article reports on results from the analyses of these clinical interviews.

Here is the abstract of the article:

In this research article, I present evidence of the existence of visual templates in pattern generalization activity. Such templates initially emerged from a 3-week design-driven classroom teaching experiment on pattern generalization involving linear figural patterns and were assessed for existence in a clinical interview that was conducted four and a half months after the teaching experiment using three tasks (one ambiguous, two well defined). Drawing on the clinical interviews conducted with 11 seventh- and eighth-grade students, I discuss how their visual templates have spawned at least six types of algebraic generalizations. A visual template model is also presented that illustrates the distributed and a dynamically embedded nature of pattern generalization involving the following factors: pattern goodness effect; knowledge/action effects; and the triad of stage-driven grouping, structural unit, and analogy.

Developing a ‘leading identity’

Laura Black, Julian Williams, Paul Hernandez-Martinez, Pauline Davis, Maria Pampaka and geoff Wake have written an article called Developing a ‘leading identity’: the relationship between students’ mathematical identities and their career and higher education aspirations. This article was published online in Educational Studies in Mathematics last Wednesday. Here is the abstract of their article:

The construct of identity has been used widely in mathematics education in order to understand how students (and teachers) relate to and engage with the subject (Kaasila, 2007; Sfard & Prusak, 2005; Boaler, 2002). Drawing on cultural historical activity theory (CHAT), this paper adopts Leont’ev’s notion of leading activity in order to explore the key ‘significant’ activities that are implicated in the development of students’ reflexive understanding of self and how this may offer differing relations with mathematics. According to Leont’ev (1981), leading activities are those which are significant to the development of the individual’s psyche through the emergence of new motives for engagement. We suggest that alongside new motives for engagement comes a new understanding of self—a leading identity—which reflects a hierarchy of our motives. Narrative analysis of interviews with two students (aged 16–17 years old) in post-compulsory education, Mary and Lee, are presented. Mary holds a stable ‘vocational’ leading identity throughout her narrative and, thus, her motive for studying mathematics is defined by its ‘use value’ in terms of pursuing this vocation. In contrast, Lee develops a leading identity which is focused on the activity of studying and becoming a university student. As such, his motive for study is framed in terms of the exchange value of the qualifications he hopes to obtain. We argue that this empirical grounding of leading activity and leading identity offers new insights into students’ identity development.

"Me and maths"

Pietro Di Martino and Rosetta Zan have written an article entitled ‘Me and maths’: towards a definition of attitude grounded on students’ narratives. The article was published online in Journal of Mathematics Teacher Education on Friday. Here is a copy of the abstract of their article:

The attitude construct is widely used by teachers and researchers in mathematics education. Often, however, teachers’ diagnosis of ‘negative attitude’ is a causal attribution of students’ failure, perceived as global and uncontrollable, rather than an accurate interpretation of students’ behaviour, capable of steering future action. In order to make this diagnosis useful for dealing with students’ difficulties in mathematics, it is necessary to clarify the construct attitude from a theoretical viewpoint, while keeping in touch with the practice that motivates its use. With this aim, we investigated how students tell their own relationship with mathematics, proposing the essay “Me and maths” to more than 1,600 students (1st to 13th grade). A multidimensional characterisation of a student’s attitude towards mathematics emerges from this study. This characterisation and the study of the evolution of attitude have many important consequences for teachers’ practice and education. For example, the study shows how the relationship with mathematics is rarely told as stable, even by older students: this result suggests that it is never too late to change students’ attitude towards mathematics.

Graphics calculators in examination

Roger G. Brown from the University of Leeds (UK) has written an article entitled Does the introduction of the graphics calculator into system-wide examinations lead to change in the types of mathematical skills tested? This article was published online in Educational Studies in Mathematics earlier this week. Here is the abstract of his article:

The paper reports on the introduction of the graphics calculator into three centralised examination systems, which were located in Denmark, Victoria (Australia) and the International Baccalaureate. The introduction of the graphics calculator required those responsible for writing examination questions to consider how to assess mathematical skills within this new environment. This paper illustrates the types of mathematics skills that have been assessed within the graphics-calculator-assumed environment. The analysis of the examination questions indicated that only two out of the six mathematics examinations considered demonstrated any significant change in the types of skills assessed in conjunction with the introduction of the graphics calculator. The results suggest that it is possible to reduce the use of questions assessing routine procedures (mechanical skills) with a graphics calculator, but it is also evident that there have not been major changes in the way that examination questions are written nor the mathematics skills which the questions are intended to assess.

Using live, online tutoring

Richard Lissaman, Sue de Pomerai and Sharon Tripconey have written an article that was recently published online in Teaching Mathematics and its Applications. The article is entitled Using live, online tutoring to inspire post 16 students to engage with higher level mathematics, and here is a copy of the article’s abstract:

In recent years, there has been a decline in the number of students aged 16–18 studying and being able to access higher level mathematics in schools in the UK. The Further Mathematics Network (FMN) was set up to enable access to such mathematics to all students and to promote and encourage students to study at this level. The FMN has pioneered the use of Elluminate, a well established web-based package, for live mathematics tutoring. Small groups of students meet online with an experienced tutor to learn new aspects of mathematics and to look at ways to solve complex problems. There are also extensive online resources to support the students’ learning. The findings are discussed in the following article.

Pre-service teachers’ teaching anxiety

Murat Peker has written an article about Pre-Service Teachers’ Teaching Anxiety about Mathematics and Their Learning Styles. This article was published in the last issue of Eurasia Journal of Mathematics, Science & Technology Education. A main issue in the article is the combination of focus on mathematics (teaching) anxiety and learning styles. When it comes to learning styles, Peker very much builds upon the theories of Kolb (see p. 337). The theoretical overview is quite interesting, and in many respects new to me.

The study included 506 pre-service teachers from Turkey, and two instruments were used in the study: the Learning Style Inventory and the Mathematics Teaching Anxiety Scale (both questionnaires). The first questionnaire is derived from Kolb’s works, whereas the anxiety scale was developed by the researcher. I miss a discussion of the rationale behind the choice of methods/instruments in the study, and I think this is an important aspect of such a research article. I also think there are a couple of issues about the Learning Style Inventory that should be discussed somewhat. My main critique towards the statements from this questionnaire (as they are presented in the article) is that they appear very general. Being faced with a statement like “When I learn, I like to watch and listen”, my response would vary according to the subject and teaching/learning context I had in mind. As with research on beliefs, I think it would make more sense to investigate views that teachers (pre-service or in-service) have on teaching and learning algebra, geometry, functions etc., rather than their views on teaching and learning in general. My response to a statement like “I learn best when I am practical” would also vary a lot according to what I had in mind when giving the response. I therefore think that the questionnaire has some severe weaknesses that need to be addressed. Other than that, I think the article is interesting, and Peker obviously points to some important issues!

Abstract

The purpose of this study was to investigate the differences in the teaching anxiety of pre-service teachers in mathematics according to their learning style preferences. There were a total of 506 pre-service teachers involved in this study. Of the total, 205 were pre-service elementary school teachers, 173 were pre-service elementary mathematics teachers, and 128 were pre-service secondary mathematics teachers. In the collection of the data, the researcher employed two types of instruments: the Learning Style Inventory (LSI) and the Mathematics Teaching Anxiety Scale (MATAS). The LSI determined the participants’ learning style preference: divergent, assimilator, convergent, and accommodator. The MATAS found the participants’ mathematics teaching anxiety level. The researcher used the one-way ANOVA with α = 0.05 in the analysis of the data. The study revealed that there were statistically significant differences in mathematics teaching anxiety between
convergent and the other three types of learners: divergent, accommodator, and assimilator. The difference was in favour of convergent learners. In other words, convergent learners had less mathematics teaching anxiety than the other types of learners. The study also found that divergent learners showed the highest level of mathematics teaching anxiety.

Reference:

Peker, M. (2009). Pre-Service Teachers’ Teaching Anxiety about Mathematics and Their Learning Styles. Eurasia Journal of Mathematics, Science & Technology Education, 5(4), 335-345

NOMAD, October 2009

The Nordic Journal of Research in Mathematics Education (NOMAD) has recently released the October issue. This issue contains three research articles:

Graphic calculators and connectivity software

Ornella Robutti has written an article called Graphic calculators and connectivity software to be a community of mathematics practitioners. This article was recently published online in ZDM. Here is the abstract of the article:

In a teaching experiment carried out at the secondary school level, we observe the students’ processes in modelling activities, where the use of graphic calculators and connectivity software gives a common working space in the class. The study shows results in continuity with others emerged in the previous ICMEs and some new ones, and offers an analysis of the novelty of the software in introducing new ways to support learning communities in the construction of mathematical meanings. The study is conducted in a semiotic-cultural framework that considers the introduction and the evolution of signs, such as words, gestures and interaction with technologies, to understand how students construct mathematical meanings, working as a community of practice. The novelty of the results consists in the presence of two technologies for students: the “private” graphic calculators and the “public” screen of the connectivity software. Signs for the construction of knowledge are mediated by both of them, but the second does it in a social way, strongly supporting the work of the learning community.